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The effect of the pressure gradient produced by a nonequimolar chemical reaction 
upon the effectiveness factor in a spherical catalyst pellet is analyzed. A binary 
gaseous mixture under isothermal conditions is studied taking into account mass 
transfer due to the following mechanisms: viscous flow, nonequimolar flow, bulk 
diffusion and Knudsen diffusion. An irreversible, mth order reaction kinetics with 
respect to the gaseous reactant is assumed. Equations governing mass transfer with 
chemical reaction in the porous medium are developed on the basis of the dusty 
gas model. By numerical solution of these equations it is shown the nonisobaric 
effectiveness factor is considerably different from the isobaric one for every flow 
and diffusion regime. Besides, the Kramers-Kistemaker effect is observed when 
plotting the maximum pressure difference in t.he catalyst pellet as a function of 
the external pressure. 

NONENCLATURE 

reaction components 
permeability of the porous medium, 
L2 
bulk effective diffusivity, L2/T 
coefficient independent of pressure, 
DAB’ = DAB P, M l/T” 
Knudsen effective diffusivity, L2/T 
dimensionless parameter defined be- 
low Eq. (31) 
resultant effective diffusivity, 
llDR = (Po/DAS~) + (~/DAA~), L2/T 

generalized Thiele modulus defined 
below Eq. (31) 
dimensionless parameter defined be- 
low Eq. (31) 
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specific constant of chemical reaction 
rate 
molecular weight, M/m01 
reaction order 
molar flux, mol/L2T 
stoichiometric coefficient of the 
chemical reaction 
dimensionless pressure, P* = P/PO 
pressure, M/LT” 
radius of the catalyst pellet, L 
gas constant, ML2/T2 mol 0 
chemical reaction rate, mol/L3T 
radial position in the catalyst pellet, 
L 
dimensionless radial position, r* = 
r/R, 
absolute temperature, 0 
mole fraction 
dimensionless mole fraction, y* = 
Y/Y0 
effectiveness factor 
coefficient defined by Eqs. (16) and 
(17) 
viscosity, MILT 



Subscripts tiveness factors are identical for Knudsen 

0 evaluated at the boundary of the diffusion regime. 

catalyst pellet (b) For bulk diffusion or Poiseuille flow 

1 indicates a diffusive flux regime the nonisobaric effectiveness factor 

2 indicates a viscous flux is lower than the isobaric one for n > 1, 

m indicates gaseous mixture and is higher for n < 1, in agreement with 
the positive direction of t.he pressure gra- 

INTRODUCTION 
dient which is developed in each case. 
However, it is shown the deviations be- 

Let us consider the following gas-phase tween both effectiveness factors are lower 
reaction taking place in a porous catalytic than 10% in most actual conditions. 
pellet, (c) The pressure gradients in the cata- 

AB) = nB(,,. (1) 
lyst pellet reaches its maximum value when 
mass transfer is produced by Knudsen 

When the reaction given by Eq. (1) diffusion. 
takes place, composition gradients are de- In a more recent study (8)) E. A. Mason, 
veloped inside the pellet and, if 71. # 1, A. P. Malinauskas, and R. B. Evans III 
pressure gradients will also arise in the consolidate and extend the kinetic theory 
system. Hence, mass can be transfered by foundations of the dusty gas model. The 
four mechanisms viscous and nonequimolar total flux of one of the components of a 
flow, and Knudsen and bulk diffusion. binary gaseous mixture under pressure gra- 

The influence of the volume change upon dients is obtained by adding the diffusive 
the effectiveness factor of the reaction has and viscous fluxes 
been studied (1, .2), considering an iso- 
thermal isobaric system and bulk diffusion NA = NAl+ YA(NA + NB)?, (2) 

regime. where N, is the total flux of the component 
In order t.o study the effect of pressure A, and the subscripts 1 and 2 indicate dif- 

gradients upon mass transfer in the porous fusive and viscous fluxes, respectively. 
medium, appropriate equations must be ob- Here, the authors point out a mistake in 
tained. R. B. Evans III, G. M. Watson, their previous developments (3-5), where 
and E. A. Mason developed the dusty gas N,,, was considered as the total flux of the 
model (3-5)) which considers the porous component A, even under pressure gra- 
medium as an array of dusty particles held dients, provided the effects of pressure on 
fixed in space. Gas-surface interactions are the bulk diffusion coefficient had been 
taken into account by assuming dust par- taken into account. 
ticles are giant molecules, thus capable of As previous papers (6-7) dealing with 
being described by the equations of the nonisobaric effectiveness factors asslImed 
kinetic theory of gases. From this view- in their developments the validity of the 
point, equat,ions governing the effects of incorrect equations developed in t.he orig- 
pressure, temperature and composition gra- inal dusty gas model, it is obvious the 
dients upon mass transfer in the porous necessity of rebuilding the whole problem. 
medium are derived. Finally, R. D. Gunn and C. Judson King 

Assuming the validity of the dusty gas (9) developed an equation for mass trans- 
model equations, S. Otani, N. Wakao and fer in porous media with pressure and 
J. M. Smith (6, 7) studied the nonisobaric composition gradients, based on the dusty 
effectiveness factor of porous media. By gas model extended theory (8). However, 
analyzing the reaction given by Eq. (1)) these authors did not consider the effect 
and considering isothermal steady state of a chemical reaction. The theoretical re- 
conditions and a first order irreversible sults, which may be reduced to every 
reaction, the following results were particular case, were experimentally 
obtained: checked in nonisobaric porous media. 

(a) The nonisobaric and isobaric effec- The aim of the present paper is two-fold: 
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(1) Determination of the effect ofl the 
different parameters of the system on the 
pressure gradient established in the porous 
catalyst pellet. 

(2) Calculation of the nonisobaric effec- 
tiveness factor and comparison of it with 
the isobaric one for every flow and diffu- 
sion regime, from Knudsen to Poiseuille. 

FUNDAMENTALS 

The Equations of the Phenomenon 

In order to reach our goal, the following 
working hypotheses will be assumed: 

(a) The chemical reaction rate is given 
by: 

?-A = kyAmPm (3) 

(b) the catalyst pellet is spherical and 
isothermal 

(c) the gaseous mixture is binary 
(d) the system has reached the steady 

state. 

Taking into account the previous restric- 
tions, the behaviour of the system may be 
described by the following equations: 

the diffusive flux of A, 

DABDAA" 

NA1 = - (DAB + DAAK) :T “d’;l 
-- 

+ (DA:?&K) (NAI + NB~) (4) 

the diffusive flux of B, 

NBI = - cDtfi*DfU;B;K) iTddpT" 
-- 

+ (DAF~~~~B~) (NAI + NBI) (5) 

the viscous flux of A, 

NA2= -ST: (6) 
m 

the total flux of A, 

NA=NAI+NAZ (7) 

the relationships between mole fractions 
and pressures, assuming ideal b-ehavior, 

PA = YAP 09 
Pe = Y13P (9) 

!/A + YB = 1 

the relationship between 
A and B, 
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(10) 

total fluxes of 

Ng = -&A 

the continuity equation for A, 

(11) 

- $ $ (+NA) = kyAmPm (12) 

Equations (4)) (5) and (7) are’ based on 
the extended dusty gas model (8, 9). The 
symbols used in the previous equations 
indicate: 

N: radial molar flux 
y: mole fraction 
P : pressure 
R: gas constant 
T: absolute temperature 
r: radial coordinate in the catalyst pellet 
D AB: bulk effective diffusivity 
D”: Knudsen effective diffusivity 
co: permeability of the porous medium 
pm: gaseous mixture viscosity 

The subscripts 1 and 2 indicate diffusive 
and viscous flux, respectively. The well- 
known relationship. 

NBI - %l = (MA/MB)~‘~ = n”‘, (13) 

is contained in the previous equations (9). 

Fluxes of A and B 

By rearranging Eqs. (4)-( lo), and 
letting 

D K RB K = (MA/Jfn)‘I’ = 
D 

nl’*, it results (9) 
AA 

-WA 
DABOP 

= (1 + (n"." - l)y~}P + (DAB~/DAA~) 

1 dy, (Y4) 
XRTdr+IZT 

x 

nQ,‘DAAKP -/- DARO 
{I + (nQ.5 - l)y~If' + (DAB~/DAA~) 

+ 2 $7 (14) 1 
where D ABo = DAJ’ is a coefficient in- 
dependent of pressure. 
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In deriving Eq. (14) it is not necessary 
to consider the slip flow separately (9). 
This is another difference with the develop- 
ment of Reference (7)) where the slip flow 
is included as an independent contribution, 
a traditional result for flow in capillaries 
which is not valid for porous media. 

It will be assumed that the gaseous 
mixture viscosity pm verifies Wilke’s 
empiric equation (10)) 

YAPA 
Pm = 

y-4 i- (1 - YA)@AB 
(1 - !/Ah3 

+ (1 - !/A) + YA@.BA' (15) 

where 

-NB 
n".3DAnoP 

= (1 + (no,” - l)y~]P + (DABO/DAA~) 

1 dy, (1 - !/A) 
xRTdr+ RT 

' [ 
nO.'(DAAKP + DAB') 

(1 + (no." - l)y~jP + (DABO/DAA") 

+ >r g (20) 
I 

By dividing Eq. (14) by Eq. (20)) with 
the aid of Eqs. (10) and (11) , and after 
some rearrangements, the following ex- 
pression is obtained, 

(no.” - n)dyA 
1 + (n - l>yA 

@AB = (l/dS)(l + n)-l" 
X (1 + (PA/k&3)1'2n-1'4]2 (1'3) 

9 HA = (l/&)(1 + l/n)-1/2 
x f 1 + (cLB/PA)1'2n1'4}2 (17) 

The PA/pLB relationship may be calculated 
as 

= n".'DAAK 

[ D AIS0 + /im;AAK 
cop 

+- 
+ cO(n".5 - 1)&A dP 

I..&AB~ I.~)AB' I 

+ 
F 

;;;;:)++‘;l-mn;;;;;; g (21) 1 
So, by taking into account the pressure 

~A//.LB = (MA/MB)"~ = z/i (18) 
P may be related to the mole fraction yA 
through Eq. (21)) Eq. (14) may be written 

From Eqs. (15-18)) 

pm = j[l+ (4{1 - YA}/'YA)(~{~ + 7~])-"~31-1 
+ n”.“[(l + [4!/A/il - yA}l) 

x (8(1 + l/n))-"."I-')p* (19) 

Equation (19) enables us to express pLm 
in Eq. (14) as a function of pLi\ and ye. 
Equation (14) contains two dependent 
variables, P and ya. Hence, we need a 
P = P(r) relationship or a P = P(y..t) 
function which may then be introduced in 
Eq. (14). This latter relationship may be 
obtained by the following procedure. 

First, an analogous equation to Eq. (14) 

as, 

- NA = ~~(P,YA) (dyA!dr) 
+ fi(P,vA)(dPld?~A)(dyA/dr), (22) 

where : 

vflfi(pd/A) 

= (1 + (no.' - l)fiyF+ (DA,"/DAA~) 
1 

x RT (23) 

.f2(p,yA) = & 

’ 
n".'DaAKP + DAIS' 

{ 1 + (7~0.~ - ~)IJA JP + (DABOIDAA~) 

is written for -the total flux of B in the 
porous medium, 

dP (?P - n) 
-= 
dyA [l + or, - l)yA] ““z;;l’ + p*K 1 + DG + (no.6 ;EyD\AK 

+ I ,n”.’ + (n - n”‘)yA 

P 1 + (72, - l)YA >I 

(2-l) 

(25) 
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Equation (25) can be easily obtained from 
Eq. (21). A convenient way of writing 
Eq. (22) is, 

- NA = fs(P,yA) (dyA/dr), (26) 
where 

The Flux of A with Simultaneous Chemical 
Reaction 

So far, an expression for the total flux 
of A has been obtained. We may now 
rearrange the continuity equation for A, 
namely Eq. (12)) which may be written as, 

WA 2 
-J+;NA = --YAP (27) 

By differentiating Eq. (26) with respect 
to T, 

dNA d2yA -- 
dr = j3(P,YA) dr2 

where 
+ h(P,YA) (dYA/dd2, (28) 

f (p,yA> = afdP,YA) dP ; dfdPdA) 
4 

a!' dy, aYA 
(29) 

By introducing Eqs. (26) and (28) in 
Eq. (27), 

bAmpm 

'fin 

(30) 

dP’ 1 

dYA*= B1(yA*) { nO.5D* + [H*/B&A*)][(~/~*) -k (B4(YA*)P*)I + (B~YA*)/P*) 1' (32) 

P* = P/PO 

H* = coPo2/~~D~Bo 

D’ = DAA~PO/DABO 

gl(P*,YA*,H*,D*,YAo,n> 
j4(P*,yA*,H*,D*,yAo,n) 

= YAo j3(P*,yA*,H*,D*,yAo,n) 

g2(P*,yA*,H*,D*,YAo,n) 

= j3(p*,YA*,H*,D*,YAo,n) 
X (1 + ~/D*)(RT/DAB~) 

h (m + 1) k(RT)PAo(m-1) O*’ 
0 DR 1 

1 PO 1 -= -- 
DR DAB' + DAA~ 

The dimensionless groups H” and D’ rep- 
resent the ratio between the viscous flow 
coefficient and Knudsen effective diffusivity 
with respect to the bulk effective dif- 
fusivity, respectively. The parameter ho 
is the generalized Thiele modulus of the 
system. The subscript 0 indicates in every 
case the parameter or variable must be 
evaluated at the boundary of the catalyst 
pellet (r = Ro). 

The g1 and gz functions are developed 
in the Appendix. 

The corresponding P” = P*(yA*) may 
be obtained by solving Eq. (25) written 
in dimensionless form, 

In order to integrate Eq. (30) it is con- 
venient to write it in a dimensionless way, 

d2yA* d2yA* F + ; ‘$ + gl(P*,YA*,H*,D*,YAo,n) F + ; ‘$ + gl(P*,YA*,H*,D*,YAo,n) 

18h0~yA*~P*~ 18h0~yA*~P*~ 
= (m + l)g2(P*,yA*,H*,D*;yno,n)’ (31) = (m + l)g2(P*,yA*,H*,D*;yno,n)’ (31) 

where where 

q* = r/Ro q* = r/Ro 

yA* = ?&A0 yA* = ?&A0 

where the B1 to B, functions are indicated 
in the Appendix. 

Radial profiles of pressure and composi- 
tion can be obtained by integrating Eqs. 
(31) and (32)) with the following boundary 
conditions : 

r* = 0 dyA’/dr* = 0 
r* = 1 yA* = 1 
q* = 1 P’ = 1 (33) 

On the other hand, the effectiveness 
factor of the catalyst pellet is defined as, 
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4nRo2N~l,m 
q1 = - 

(~,k!+r&3&/~~mp~m 
(34) 

By using Eq. (26) and the gZ and h, 
definitions, Eq. (34) turns out to 

71 = 
(m + 1) (g&/,*ldhl,w (35) 

6 ho2 

Hence, the effectiveness factor vi takes 
into account the influence of the radial 
composition and pressure profiles upon the 
chemical reaction rate. 

By analyzing the radial composition 
profiles developed by nonequimolarity in 
chemical reaction, but considering that 
pressure remains constant through the 
catalyst pellet, another effectiveness factor, 
namely qI1, may be defined. Thus, ‘by 
taking dP/dr = 0 in Eq. (14) and follow- 
ing the same steps leading to Eq. (31), it 
results : 

18 h,,rJyA*m =------ 
(m + 1) d/A*,l~*,?/AO,n) 

(36) 

The g3 and g4 functions are developed in 
the Appendix. Hence, the effectiveness 
factor qII is defined as, 

qIr = (m + 1) g4 . dyi*ldr*i+=l 
6 ho2 

(37) 

Finally, by considering the radial com- 
position profiles developed by an equimolar 
chemical reaction, the classical effective- 
ness factor, namely vnI, is easily obtained. 
Thus, letting n = 1 in Eq. (36) (then g, = 
0, and g4 = I), the corresponding differ- 
ential equation results, 

(38) 

So, the effectiveness factor vIrI is given by, 

qIII = (m + 1) (dy..t*,‘dr*)/,*=~ 
6 ho2 (39) 

The fact that a resultant effective dif- 
fusivity has been employed when defining 
the generalized Thiele modulus ho, makes 
the equimolar effectiveness factor rlIII in- 
dependent of the diffusion regime (qnl does 
not depend on the D” value). 

The previous definitions may be sum- 
marized as follows: yr is the nonisobaric, 
nonequimolar effectiveness factor, vi1 is 
the nonequimolar but isobaric effectiveness 
factor, and vrII is the equimolar and, thus, 
isobaric effectiveness factor of the catalyst 
pellet. 

INTEGRATION OF THE DIFFERENTIAL 
EQUATIONS 

Differential Eqs. (31), (32), (36)) and 
(38) were solved by applying the fourth 
order Runge-Kutta numerical method 
(11), and with the aid of an IBM/360 
digital computer. When solving Eqs. (31), 
(36), (38), the variables change suggested 
by J. Wei, and analyzed in Reference (12), 
was performed. In this way, the solution 
could be obtained without using a trial an 
error method for checking the boundary 
conditions. In order to perform the solution 
of Eq. (31) the P” = Pi’ (y*“) relation- 
ship obtained by solving Eq. (32) was 
introduced in the computation program. 
Besides, by combining both results, namely 
pt+ = pit (y.,,it) and yA+s =y,,* (r”), radial 
pressure profiles were obtained. 

The computation program was verified 
as: 

(a) an increase in the number of radia1 
increments showed constancy of numerical 
values of the solutions 

(b) the classical vrn vs h,, relationship 
for first order reaction (m = 1) was ob- 
tained when solving Eq. (38). 

RESULTS 

The dimensionless parameters of the 
system were selected in the following 
range : 

D”: 0.01-100, corresponding to a change 
in the diffusion regime from Knudsen to 
bulk mechanisms 

H”: 0.01-100, corresponding to an in- 
crease in the permeability of the porous 
medium ; 

n: 0.1-10 
yA”: 0.1-0.9 
m: 1; 0.5 

Results are illustrated in Figs. l-9. 
Figure 1 shows radial composition and 
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1.20- 

H* = 0.01 
m =I.0 
0 =lO.O 
YAP= 0.9 
ho = 0.6 

l.oo~o.o 
0 0.2 0.4 0.6 0.6 I* 

FIG. 1. Radial total pressure and mole fraction profiles in the catalyst pellet for H' = 0.01. 

FKQ. 2. Radial total pressure and mole fraction profiles in the catalyst pellet for 2%’ = 1.0. 
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FIG. 3. Maximum dimensionless pressure difference in the catalyst pellet as a function of D*. 

pressure profiles for low values of the 
porous solid permeability (H” = 0.01) and 
every diffusion regime. The pressure gradi- 
ent reaches a significant figure for Knudsen 
and transition diffusion regimes, but is con- 
siderably depressed in the bulk diffusion 
one. Figure 2 shows the same radial pro- 
files for greater values of the porous 
medium permeability (H” = 1.0). Values 
of the radial pressure gradient are lower 
than those in the first case. When H” = 
100, the pressure gradient is considerably 
low though different than zero (this result 
is not plotted). 

It is interesting to emphasize the inver- 
sion in the curves of P” = P”(P) with 

rl1° 

06- 

04- 

0.1 I I 8 I 
0.2 0.4 0.6 0.8 1 2 hl 

FIQ. 4. Effectiveness factor vs Thiele modulus for 
Knudsen diffusion regime. 

respect to D” showed in Fig. 2. This effect 
has been illustrated in Fig. 3 as a plot of 
AP/P, vs D”,AP being the pressure dif- 
ference between the center and the bound- 
ary of the catalyst pellet. The resulting 
curve rcachcs the maximum at D” = 0.6. 
For lower LJ3’ values, AP is considerably 
depressed, thus leading to the inversion 
showed in Fig. 2. 

Figures 4-6 show the effectiveness 
factor vi (; = I, II, III) as a function of 
the Thiele modulus h,, for every diffusion 
regime. It may be seen that the non- 
isobaric effectiveness factor, vl, is consider- 
ably different from the isobaric one, r]rr, 
for all diffusion regimes. vIr is in turn dif- 

0.1' 
0.2 0.4 0.6 0.8 1 2 ho 

FIG. 5. Effectiveness factor vs Thiele modulus for 
transition diffusion regime. 
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1:: 
0.2 0.4 06 0.6 1 2 ho 

Fro. 6. Effectiveness factor vs Thiele modulus for 
bulk diffusion regime. 

ferent from rrII except in Knudsen dif- 
fusional regime. It is interesting to point out 
the low incidence of the H” value upon the 
nonisobaric effectiveness factor in every 
diffusion regime. 

Figure 7 indicates the effect of the 
change in the number of moles of the 
chemical reaction, n, upon the nonisobaric 
effectiveness factor. This factor is greater 
than the equimolar one (vIII) when 7 < 1, 
and lower when n > 1. 

Figure 8 shows curves of vI vs h, for 
different values of D”. It is seen the higher 
the value of D”, the lower the correspond- 
ing value of the nonisobaric effectiveness 
factor. 

In Fig. 9, curves of rlI vs L, are plotted 
for various n and a different reaction order 
(m = 0.5). 

‘J 0.2 0.4 I 

FIG. 7. Effect of the number of moles produced 
in the chemical reaction upon the nonisobaric effec- 
tiveness factor. 

;;a;;, ’ = 10.0 
;Ap=09 P.2 

10,100 

0.2c 1 

0.1 I I 1 I 1 I 

0.2 0.4 0.6 0.8 1 2 ho 

FIG. 8. Effect of D’ on the nonisobaric effective- 
ness factor. 

DISCUSSION OF RESULTS 

Radial Pressure Profiles in the Catalyst 
Pellet 

The radial pressure gradient is a func- 
tion of the dimensionless parameters H* 
and D+. An increase in the first one, re- 
lated to a higher permeability of the 
porous medium, diminishes the pressure 
gradient. However, as can be seen in Fig. 
3, the variation of AP with D” reaches a 
maximum. Mathematically, the existence 
of this maximum is easily justified by 
analyzing Eq. (32). The corresponding 
physical interpretation arises when Fig. 3 
is regarded as a plot of AP vs PO (D” 
being proportional to P,, and H* constancy 
requiring a continuous change either in 
the permeability or in the viscosity). At 
low working pressures (Knudsen diffusion 
regime) AP is proportional to P, while at 
greater working pressures (viscous flow 

ra =05 
0 4 'A0 =o.g 

i 

1:: 0.2 I 

FIG. 9. Nonisobaric effectiveness factor for reac- 
tion order m = 0.5. 
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regime), AP is proportional to P-l. The 
maximum arises when both effects are com- 
bined. It is convenient to point out that the 
existence of the maximum in the AP vs P 
function was theoretically predicted (8) 
for a binary gaseous mixture in a closed 
system without chemical reaction (Kram- 
ers-Kistemaker effect). 

Nonisobaric Effectiveness Factor 

Results of Figs. 4-7 show that the non- 
isobaric effectiveness factor is considerably 
different from the isobaric one, even for 
values of n = 0.5 and 2, and for every 
mass transport regime. This indicates that 
even in the cases in which pressure gra- 
dient is almost negligible (high H” values) 
the flow produced by this gradient is very 
significant. That is to say, the pressure 
gradient is almost negligible just because 
the flux coefficient H” is high. 

In fact, the system under analysis is a 
semi-closed one. Then, the pressure gra- 
dient can not be established at will by us 
but it adjusts automatically in accordance 
to the prevailing mass transport regime. 
In this situation, a low value of the pres- 
sure gradient does not involve that the 
resultant flux is negligible. 

As the nonequimolar flow is character- 
istic of the bulk diffusion regime, it must 
be verified that rlIr = vIrr in Knudsen dif- 
fusion pattern. This is just the result 
plotted in Fig. 4, which gives an extra 
verification of the consistency of the 
numerical calculations. However, even in 
Knudsen diffusion regime, the non-isobaric 
effectiveness factor is considerably differ- 
ent from the isobaric one. 

In order to show the low incidence of 
the H” value upon the non-isobaric effec- 
tiveness factor, let us rewrite Eq. (22) in 
the following way: 

NA 
dyddr 

= ~I(P,YA) + S’x(P,yd(d~‘/dYA) 

+ f”t(P,yA)(dP/&h), (40) 

where : 

f’O,Y*) = 
n”.‘DAAKP -/- DAH’ 

11 + (n?~ - l)y,\P + (DAB’/DAA~) I 

(41) 

fN@,yA) = j$ (42) 

The three terms of the right-hand side 
of Eq. (40) represent fluxes of A per unit 
of its mole fraction gradient generated, 
respectively, by mole fraction gradient 
(diffusive flux), total pressure gradient 
(diffusive flux) and total pressure gradient 
(viscous flux) . 

The terms may be rearranged as: 

(43) 

dP 
Fv = fNz(paA) &j$h(P,ga), (44) 

where F, represents the ratio between the 
diffusive flux generated by total pressure 
gradients with respect to the diffusive flux 
generated by mole fraction gradients ; and 
F, corresponds to the ratio between viscous 
flux and diffusive flux produced by mole 
fraction gradients. 

Figure 10 shows curves of F. and F, 
as a function of H”. As may be seen from 
the figure, the addition of both fluxes does 
not depend on the Hi’ value, which is the 
cause of the low incidence of the H” value 
upon the nonisobaric effectiveness factor. 
Besides, Fig. 10 shows that for high H” 
values, and consequently low values of the 
pressure gradient, the resulting viscous 
flow is very significant, and accounts for 
the important deviations between qr and 
711. 

The variation of the nonisobaric effec- 
tiveness factor with D”, plotted in Fig. 8, 
would lead to the rather misleading con- 
clusion that the greater the tendency to 
bulk diffusion regime, the lower the effec- 
tiveness factor. In doing this statement one 
must not forget that the Thiele modulus 
has been defined in terms of a resultant 
diffusivity which, in fact, is a function of 
D”. If the Thiele modulus had been de- 
fined with the bulk diffusivity, the curves 
would have shown just an opposite varia- 
tion with D”. 

On the other hand, an increase in the 
mole fraction of A at the boundary of the 
catalyst pellet diminishes the nonisobaric 
effectiveness factor when n > 1. However, 
the decrease is negligible for 1 < n < 5, 
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by t,otal pressure gradients, as a function of H*. F1c originated 

and is not important for higher values of 
n. (These results are not plotted herewith.) 

0" = 1.0 
111 = 1.0 
I =lO.O 
'ho= 09 

CONCLUSIONS 

Results obtained by numerical integra- 
tion of the proper differential equations 
show that the nonisobaric effectiveness 
factor is considerably different from the 
isobaric one, even for small changes in the 
number of moles during the chemical re- 
action, and for every flow regime. This in 
turn demonstrates that, in semi-closed 
systems, small pressure gradients can not 
be considered negligible because the re- 
sulting flow (the product of a flux co- 
efficient times a gradient) is quite 
significant. 

Besides, it has been shown that the pres- 
sure difference between the center and the 
boundary of the catalyst pellet reaches a 
maximum value for a given working 
pressure. 

APPENDIX 

The gi and Bi (i = l-4) functions used 
in the present study, can be written as 
follows: 

81 = Al(At + A, + A,, + As - AA (451 

g3 = (1 - n"%AO 

-411 (47) 

g4 = (1 + l/D*) 
--G- (4% 

B, = A9 (49) 

Bz = AIT + AIs (50) 

B no’5 + (n - n0’5)yAoyA* 
3 

1 + (n - l)y~oyA* I 
(52) 

I% = (1 + yAO(n0'5 - l)$,A*}, 

where : 

(53) 

A, = li(A,+ e) 

A 
3 

= :r/~*(An - A,,) 
A,*Ad 

A., = (1 - n0.“)y,,A,2 

-46 = 
A, + WA*{ (A,(1 + n”,5D*P*)/P*) - AI~AI~) 

Adlo 

As = YA*&AI~/(&AIO)~ 

A, = l/{ 1 + (no.” - l)y~o2/~* 
+ (l/D*p*) i 

As = (1 + n”JD*P*)A,/P’ 
+ (H*f’*>l&s + Ad 
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\ = I_!?/.40 + (n - l)yL 
- 9 

(7C.j - n) 

-41s = 
; l/!/A” - !/A*)“-“.s 

(l/y.40 - g.4’) + y.\*4{8(1 + l/n))-0.5 
Alo = n0.5D* + (H*(l/D* + P* 

x (1 + 1JAO(?Z”~” - l)y**))/ 
(AI; + i\,d} 

-11g = (A,, + X,~)(H*P*(~I”~~ - l)yAo) 

-12, = 
H*( l/D* + P*(l + yAO(nO.” - l]y.k=)] 

A11 = (I + (aoJ - l)z/~,,//t,* + l/D*} 

An = Alo 
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